

CCT 01 - Set Contamination Control Transmitter

Bedienungsanleitung Version 2.2

Serien-Nr. CCT 01:	
Serien-Nr. PFS 01:	
Version gültig ab:	15.11.2016

Inhaltsverzeichnis

		Seite
<u>1. Sl</u>	CHERHEITSINFORMATIONEN	4
1.1.	Gefahren durch Fehlbedienung	4
1.2.	Bestimmungsgemäße Verwendung	4
<u>2. Al</u>	NWENDUNG UND INBETRIEBNAHME	5
2.1.	Aufbau	5
2.2.	Blockschaltbild	5
2.3.	Allgemeine Informationen	5
2.4.	Messprinzip	6
2.4.1.	PFS 01 (Particle Flow Sensor)	6
2.4.2.	CCT 01 (Reinheitsklassentransmitter)	6
2.5.	Betriebsbereitschaft herstellen	6
2.5.1.	Sensoreinbau	6
2.5.2.	Optimale Betriebsbedingungen	7
2.5.3.	Einbau Reinheitsklassentransmitter	7
2.5.4.	Elektrische Anschlüsse	7
2.6.	Bedienung des CCT 01	8
2.6.1.	Nutzung der Stromausgänge	8
2.6.2.	Konfiguration und Bedienung mittels Datenmanager	9
2.6.3.	Konfiguration und Bedienung mittels virtuellem COM-Port	22
<u>3. C/</u>	AN-SCHNITTSTELLE	23
3.1.	Einführung in CAN und CANopen	23
3.1.1.	CAN-Bus	23
3.1.2.	CANopen	23
3.2.	CANopen – Funktionalität	24
3.3.	Inbetriebnahme	24
3.3.1.	Baudrate	24
3.3.2.	Node ID	25
3.3.3.	Start	
3.4.	Objektverzeichnis	26
3.4.1.	kommunikationsspezifischer Teil	27
3.4.2.	Herstellerspezifischer Teil	28
3.5.	SDO (Service Data Object)	29
3.6.	Transmit PDO	30
3.7.	Emergency Nachrichten	30
3.8.	Ausfallüberwachung	31
3.8.1.	Nodequarding	31
3.8.2.	Heartbeat	31
3.9.	TIMESTAMP	31
3.10.	Netzwerkmanagement	31
3.11.	EDS-Datei	31
3.12.	Beispiele zur CAN-Kommunikation	31
4. SI	ENSORKALIBRIERUNG	32

5. ANHANG 33 5.1. 5.1.1. 5.1.2. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7.

1. <u>Sicherheitsinformationen</u>

1.1. Gefahren durch Fehlbedienung

Das **CCT 01 – Set** wurde einer Sicherheitsprüfung und –abnahme in Übereinstimmung mit der IEC 1010-1 / EN 61010 – 1, Teil 1 unterzogen. Die integrierten elektronischen und hydraulischen Schutzelemente gewährleisten bei bestimmungsgemäßer Verwendung einen sicheren Betrieb.

Bei Fehlbedienung und Mißbrauch, sowie bei Nichtbeachtung der Einsatzgrenzen und Sicherheitsvorschriften drohen Gefahren für:

- Leib und Leben des Anwenders,
- das Gerät CCT 01 und die Maschinen bzw. Anlagen, an die es angeschlossen ist,
- die Messgenauigkeit des Gerätes CCT 01,
- die Umwelt.

Diese Bedienungsanleitung enthält Informationen und Sicherheitshinweise, die einen gefahrlosen Betrieb gewährleisten und dazu beitragen, dass sich Ihr Gerät stets in einem einwandfreien Zustand befindet.

Es ist deshalb notwendig, dass alle Personen, die mit der Bedienung, Wartung und Instandhaltung des Gerätes zu tun haben, diese Betriebsanleitung unbedingt beachten.

1.2. Bestimmungsgemäße Verwendung

Das **CCT 01 – Set** ist ein leistungsfähiges und robustes Inline – Reinheitsklassen – Transmitter – System, bestehend aus dem Reinheitsklassentransmitter CCT 01 in Verbindung mit dem Particle Flow Sensor PFS 01.

Es arbeitet sehr zuverlässig und erfüllt alle Anforderungen im täglichen Messbetrieb und dient zur Kontaminationsüberwachung an:

- unterschiedlichen Prüfständen für hydraulische Komponenten,
- Filterpflegegeräten,
- Windkraftanlagen,
- mobilen und stationären Hydrauliksystemen allgemein.

Das Set ist vorgesehen und getestet für den Einsatz in allen handelsüblichen Hydraulikund Getriebefluiden sowie synthetischen Estern.

Einsatzgrenzen Partikelsensor:

Maximal zulässiger Betriebsdruck:	50 bar / 725 psi
Maximale Öltemperatur:	70 °C / 158 °F
Viskositätsbereich:	10400 mm ² /s / 461854 SUS
Maximal zulässiger Volumenstrom:	50 l/min / 13 gal/min

Das CCT 01 - Set ist prinzipiell mit 24 V DC zu betreiben!

2. Anwendung und Inbetriebnahme

2.1. Aufbau

Das CCT 01 – Set besteht aus dem PFS 01 (Particle Flow Sensor), einem Sensoranschlusskabel (I = 5 m) und dem CCT 01 – Reinheitsklassentransmitter.

Ein PFS 01 gehört immer zu einem bestimmten CCT01. Die Kalibrierwerte des PFS 01 sind immer im zugehörigen CCT 01 gespeichert!

2.2. Blockschaltbild

2.3. Allgemeine Informationen

Die Verschmutzungsfolgen auf das Hydraulik- oder Schmierungssystem sind entsprechend vielfältig und führen zu signifikant höherem Verschleiß, einer drastischen Erhöhung des Ausfallrisikos von Komponenten sowie zu Fehlfunktionen.

Das CCT 01 - Set erfüllt alle notwendigen Voraussetzungen für die kontinuierliche Überwachung und Zustandsanalyse von hydraulischen Systemen und Prüfständen. Es stellt eine kostengünstige stationäre Systemlösung dar.

Das CCT 01 beinhaltet die folgenden Funktionen:

- Ausgabe der Reinheitsklassen nach ISO 4406 als Stromsignale.
- Ausgabe der Partikelzahlen über USB.
- Speicherung von bis zu 1000 Messwerten in wählbaren Speicherintervallen.
- Übertragung der aktuellen und gespeicherten Messungen über die USB Schnittstelle auf ein externes Rechnersystem.

- Konfiguration mittels USB-Schnittstelle.
- Steuerung über die CAN Bus Schnittstelle

2.4. Messprinzip

2.4.1. PFS 01 (Particle Flow Sensor)

- Der PFS 01 besteht aus zwei Sensorelementen: Einem Lasersensor zur Partikelzählung und einem Flowsensor zur Messung des Volumenstroms durch den Messkanal.
- Der PFS 01 arbeitet nach dem Nebenstromprinzip: Von dem durch den Sensor geleiteten Ölstrom wird mittels eines Vorspannventils ein Teilvolumenstrom über einen Flowsensor und einen Laserpartikelzählsensor zur Ölanalyse geleitet.
- Der im PFS 01 integrierte, nach dem Lichtblockadesystem arbeitende, Lasersensor ist mit ISO MTD Teststaub nach ISO 11171 kalibriert.

2.4.2. CCT 01 (Reinheitsklassentransmitter)

- Die vom PFS 01 kommenden Messsignale werden ausgewertet und die Partikel 4 μm_(c) > 6 μm_(c) und >14 μm_(c) getrennt gezählt.
- Anschließend erfolgt, unter Einbeziehung des Volumenstroms durch den Messkanal, die Ermittlung der Reinheitsklassen nach ISO 4406.
- Die Ausgabe der Reinheitsklassen erfolgt in Form von drei Stromsignalen an CON 1 (entsprechend Diagramm bzw. Tabelle in Kapitel 2.6.1).
- Zusätzlich werden die Partikelzahlen und der Volumenstrom durch den Messkanal über die USB Schnittstelle ausgegeben (vgl. Beschreibung in Kapitel 2.6.2)

2.5. Betriebsbereitschaft herstellen

Das CCT 01 – Set sollte nur eingeschaltet werden, wenn der PFS 01 mit Öl durchströmt wird, da ein thermischer Volumenstromsensor verbaut ist. Sehr lange Standzeiten ohne Durchfluss können Beschädigungen hervorrufen!

2.5.1. Sensoreinbau

- Einbringung des PFS 01 in den Hydraulikkreislauf (Anschlussbedingung: Gewinde nach ISO 228-G1 oder ³/₄").
- Der Sensor sollte möglichst vertikal eingebaut und durchströmt werden. Optimal von unten nach oben, um Lufteinlagerungen zu vermeiden bzw. schnell aufzulösen.
- Die Montage solle schwingunsgedämpft sein und der Anschluß sollte mit Schlauchleitungen erfolgen.
- Die Installation sollte nicht direkt an schwingenden Komponenten oder Motoren erfolgen.

2.5.2. Optimale Betriebsbedingungen

- Sollte das Öl mit feinsten Luftblasen angereichert sein, besteht die Möglichkeit, dass diese als Schmutzpartikel detektiert werden. Durch eine Messung unter Druck (40 bar) wird eine Luftblasenunterdrückung erzielt.
- Es gibt eine andere Variante des PFS 01 Sensors. Bei dieser Variante wird nur der Messkanal des Sensors durchflossen. Für diese Variante muss ein konstanter Volumenstrom von 30 – 100 ml/min zur Verfügung gestellt werden.
- Bei sehr niedrigen Viskositäten (10 20 mm²/s) sollte eine schwächere Feder im Bypassventil verbaut werden und der Gesamtvolumenstrom über den Sensor sollte nicht höher wie 20 l/min sein.

2.5.3. Einbau Reinheitsklassentransmitter

• Mit den Klammern zur Wand- und Hutschienenmontage den CCT 01 Reinheitsklassentransmitters an einem geeigneten Ort nahe der Anlage befestigen. (Siehe Kapitel 5.3)

2.5.4. Elektrische Anschlüsse

• Verbindung zwischen dem CCT 01 - Reinheitsklassentransmitter und dem Lasersensor mittels beiliegenendem Kabel herstellen.

• Verbindung zwischen den Stromausgängen des CCT 01 (CON 1 - Schnittstelle) und Ihrem Auswertesystem herstellen. (siehe Kapitel 5.2)

 Anschluss des 24 V Spannungsversorgungskabels an die CON 2 - Schnittstelle des CCT 01. Optional ist die Spannungsversorgung auch über die CON 1 - Schnittstelle möglich. (siehe Kapitel 5.2)

Nach Einbringung des Sensors in die Anlage unter Beachtung der angegebenen Grenzwerte und Verbinden des CCT 01 mit dem Sensor und der Stromversorgung ist das CCT 01 betriebsbereit.

2.6. Bedienung des CCT 01

2.6.1. Nutzung der Stromausgänge

- Die Hauptanwendung des CCT 01 besteht in der Nutzung der an CON 1 ausgegebenen Stromsignale (Reinheitsklassen nach ISO 4406:99: < 4 μm_(c), < 6 μm_(c), < 14 μm_(c)) in Verbindung mit einem extern bestehenden Steuer- bzw. Auswertesystem. (z.B.: SPS)
- Umrechnung der ausgegebenen Stromsignale pro Zählkanal auf die Reinheitsklasse nach ISO 4406 anhand der Liste, Formel oder des Diagramms.

RK	Nennstrom	unterer Strombereich	oberer Strombereich
	[mA]	[mA]	[mA]
4	4	3,63	4,37
5	4,75	4,38	5,12
6	5,5	5,13	5,87
7	6,25	5,88	6,62
8	7	6,63	7,37
9	7,75	7,38	8,12
10	8,5	8,13	8,87
11	9,25	8,88	9,62
12	10	9,63	10,37
13	10,75	10,38	11,12
14	11,5	11,13	11,87
15	12,25	11,88	12,62
16	13	12,63	13,37
17	13,75	13,38	14,12
18	14,5	14,13	14,87
19	15,25	14,88	15,62
20	16	15,63	16,37
21	16,75	16,38	17,12
22	17,5	17,13	17,87
23	18,25	17,88	18,62
24	19	18,63	19,37
25	19,75	19,38	20,12

$$RK = \frac{Strom[mA] - 1}{0,75}$$

2.6.2. Konfiguration und Bedienung mittels Datenmanager

Standardmäßig erfolgt die Konfiguration und Bedienung des CCT 01 mittels mitgelieferter Datenmanager Software.

2.6.2.1. Installation der Treiber

- Bevor das CCT 01 an den Computer angeschlossen wird, ist es notwendig den Treiber von der beiliegenden CD-ROM zu installieren.
- Mit dem Installationsassistenten auf der beiliegenden CD-ROM kann der Treiber installiert werden (\Driver\Silabs USBXpress Driver\)
- Verwenden Sie **USBXpressinstaller_x64** für ein 64-Bit System oder **USBXpressinstaller_x86** für ein 32-Bit System

Ì	Möchten Sie Programm v Änderungen werden?	zulassen, dass durch das folgende on einem unbekannten Herausgeber an diesem Computer vorgenommen
	Programmname Herausgeber: Dateiursprung:	:: USBXpressInstaller_x86.exe Unbekannt Festplatte auf diesem Computer
Ƴ D	etails anzeigen	Ja Nein

Device Driver Installation Wizard

Completing the I Installation Wiza	Device Driver ard
The drivers were successful	ly installed on this computer.
You can now connect your o came with instructions, pleas	device to this computer. If your device se read them first.
Driver Name	Status
✓ Silicon Laboratories (W	ìn Read <mark>y</mark> to use
< Zurücl	k Fertig stellen Abbrechen

• Nachdem die Treiberinstallation abgeschlossen wurde, schließen Sie das CCT01 mit einem USB-Kabel an einen Computer an.

• Wenn das CCT 01 **zum ersten Mal** per USB mit dem Computer verbunden wurde, wird die **neue Hardware installiert**.

2.6.2.2. Einmalige Installation des Datenmanagers

Nach der Treiberinstallation wird die CCT 01 DATA MANAGER Software Vers. 3.0, welche speziell für das CCT 01 entwickelt worden ist und sich auf der mitgelieferten CD-ROM befindet, auf dem externen Computer installiert.

Der Datenmanager ermöglicht die Konfiguration und Bedienung des CCT 01, ebenso wie den Datentransfer der gespeicherten Messwerte in eine EXCEL-Tabelle.

Ablauf zur einmaligen Installation des Datenmanagers:

- CD-ROM "DATA MANAGER Vers. 2.0" starten und CCT 01 Programminstallation mit setup.exe ausführen. (Die Windowssicherheitsabfrage bestätigen, damit das Programm installiert werden kann!)
- Nach erfolgreicher Programminstallation, das Datenmanagerprogramm CCT 01 Data Manager.exe auf externem Computer starten.

🖮 CCT01 Data Manager 💦 🕨 🕨	🔆 CCT01 Data Manager
	Ort: C:\Programme\CCT01 Data Manage

2.6.2.3. Datenmanager – DATA MANAGER

- Nach dem Programmstart der CCT 01 Data Manager.exe erscheint das Hauptmenü des Datenmanagers.
- Das installierte CCT 01 wird mit seiner Seriennummer im Hauptmenü angezeigt.

740	ľ	CCT01
Data Manager	Terminal	Exit
		choose 0240 device

• Anklicken des Button [Data Manager] im Hauptmenü des Datenmanagers ermöglicht die Durchführung der Datenübertragung und der Weiterverarbeitung der gespeicherten Messwerte.

		FAT	•N			ссто1 -	Data	Mar	nager
		Save File 3 Data	8			Loa	d File	8	LOAD
		Measurement No.	Date Tim	e Particles/ml 4 µm(c)	Particles/ml 6 µm(c)	Particles/ml 14 µm(c)	CC 4 µm(c)	C 6 μm(c) 0	CC 14 μm(c)
FAT-N	CCT01								
Data Manager Terminal	Exit choose 0240 ===	START TRANSFER		SRAPH	EXCEL]ps	INT		CLOSE

2.6.2.3.1. START TRANSFER – Datenübertragung der gespeicherten Messwerte

• Datenübertragung der gespeicherten Messwerte mittels Button [START TRANSFER].

Save File B Data					Loa %	d File		LOAD
Measurement No.	Date	Time	Particles/ml 4 µm(c)	Particles/ml 6 µm(c)	Particles/ml 14 µm(c)	CC 4 µm(c)	CC 6 µm(c)	CC 14 µm(c)
				-				
		-						
		-						
						-		
	1							

• Datenpfad auswählen und Dateiname zur Speicherung der Messwerte angeben.

Datei speichern	unter				<u>? ×</u>
Spejchern in:	CCT 01		•	🗢 🗈 💣 🎟	
Verlauf					
Desktop					
Eigene Dateien					
Arbeitsplatz					
Netzwerkuma	Datei <u>n</u> ame:	Test1		•	ОК
	Datei <u>t</u> yp:	CCT01 Data Manager (*.cct)	•	Abbrechen

• Danach beginnt die Datenübertragung.

CCT01 - Data Manager

ave File	1000				Loa	d File		_
2					8 Z	:\Geräte, Prod	lukte\	LOAD
ata								
Measurement No.	Date	Time	Particles/ml 4 µm(c)	Particles/ml 6 µm(c)	Particles/ml 14 µm(c)	CC 4 µm(c)	CC 6 µm(c)	CC 14 µm(c)
0001	04.03.2009	14:01	50.70	9.90	0.30	13	10	5
0002	04.03.2009	15:01	39.46	6.00	0.50	12	10	6
0003	04.03.2009	16:01	45.60	7.60	0.10	13	10	4
0004	04.03.2009	17:01	38.00	4.60	0.30	12	9	5
			-				LL X	
		-			C			
		-						
		1	-		N. State			
		1				1		
							1	
		1					(i	
	1	1	1			1		-
			\sim				· -	
START TRANSFER		GR		EXCEL	PE	INT)	CLOSE
							4	197997
			(-)		(-)			
			(a)	(D)	(C)			

Die übertragenen Daten können:

- (a) Grafisch dargestellt werden
- (b) In eine EXCEL-Tabelle importiert werden
- (c) Als Report ausgedruckt werden

2.6.2.3.2. GRAPH - Grafische Darstellung der übertragenen Messwerte

• Grafische Darstellung der übertragenen Messwerte mittels Button [GRAPH]. Frei wählbare grafische Darstellung der:

oder der

- Reinheitsklassen nach ISO 4406:99

• Die Grafik kann als PNG- oder BMP - Datei gespeichert werden.

2.6.2.3.3. EXCEL – Export der übertragenen Messwerte in eine Exceltabelle

• Export der übertragenen Messwerte in eine Excel - Tabelle mittels Button [EXCEL]

C	Mappe3 - Microsoft Excel												
Start Einfügen Seitenlayout Formeln Daten Überprüfen Ansicht Entwicklertools													
	Finfilgen	Calibri	• • • • • • •	11 · A /	() = = ;	• • • • • • • • • • • • • • • • • • •	Standard	v 000 000	Bedingte	Als Tabelle	Zellenformatvorlagen	ar Einfügen × ar Löschen ×	Σ · A · Z · Softieren St
	* 🝼	FA	<u>u</u> •				E 70	000 ,60 -,0	Formatierung	* formatieren *	*	Format *	
Zv	ischenablage 🕞		Schrifta	rt	G Aus	richtung	S Z	ahl 🕏		Formatvorla	gen	Zellen	Bearbeiten
	4) x (4 x 📑	й 🞑	🔁 🝙 🔻										
	F10 v (fr												
	A		В	С	D	E	F	G	Н	1	J	K L	M
1			0	Data manage	r according IS	O 4406							
2													
	Measuremen	t			Particles/ml	Particles/ml	Particles/ml	CC	CC	сс			
3	No.	Date	т	Time	> 4 µm(c)	> 6 µm(c)	> 14 µm(c)	> 4 µm(c)	> 6 µm(c)	> 14 µm(c)			
4		1 04.03	.2009	14:01	50,7	9,9	0,3	13	10) 5	5		
5		2 04.03	.2009	15:01	39,46	6	5 O,5	12	10	6	5		
6		3 04.03	.2009	16:01	45,6	7,6	5 0,1	. 13	10) 4	1		
/		4 04.03	.2009	17:01	38	4,t	0,3	12	5	1 5)		
8													
10	-							1					
11								1					
12													
13													
14													
15													
16													
17													
18													
19													
20													
21													
23													
24													
25													
26													
27													
28													
29													
30													
31													
32													
33		-	/	n = / M= /									
Be	rait 🔛	L∠ Tab	eie2 🔬 fabi	eies 🖉 🖓 🖊									
00													

• Zur Weiterverabeitung der Daten stehen alle Standardfunktionen in EXCEL zur Verfügung.

2.6.2.3.4. PRINT – Reportausdruck der übertragenen Messwerte

• Reportausdruck der übertragenen Messwerte mittels Button [PRINT].

• Nach Auswahl des Druckers mit [PRINT] Ausdruck starten.

CCT 01 Report

Eaton Technologies GmbH

Measure- ment No.	Date	Time	Particles/ml 4 μm(c)	Particles/ml 6 µm(c)	Particles/ml 14 μm(c)	CC 4 µm(c)	CC 6 µm(c)	СС 14 µm(c)
0001	04.03.2009	14:01	50.70	9.90	0.30	13	10	5
0002	04.03.2009	15:01	39.46	6.00	0.50	12	10	6
0003	04.03.2009	16:01	45.60	7.60	0.10	13	10	4
0004	04.03.2009	17:01	38.00	4.60	0.30	12	9	5

2.6.2.4. Datenmanager beenden

• Verlassen der Datenmanager Software mittels Button [CLOSE] und dem Button [EXIT] im Hauptmenü.

2.6.2.5. Datenmanager – TERMINAL

Nach dem Programmstart der **CCT 01 Data Manager.exe** erscheint das Hauptmenü des Datenmanagers. Das installierte CCT 01 wird mit seiner Seriennummer im Hauptmenü angezeigt.

• Die Konfiguration und Bedienung des CCT 01 mittels Datenmanager erfolgt über den Button [TERMINAL] im Hauptmenü.

E TON

CCT01 Terminal

		Read	🖉 Fernter sumitiveliden
74T-N	ССТО1	er da liko, da va doba sta kon	
Data Manager Terminal	Exit choose 0240	weter [

- Nach der Intitialisierung werden fortlaufend Messungen angezeigt.
- Kommandoeingabe im Befehlsfeld "Write".
 - Aufrufen der einzugebenden Kommandoeingaben mit "c" und mit dem Button [WRITE] bestätigen

Write	
4	WRITE
	CLOSE

- Kommandoeingabemenü erscheint innerhalb von 20 Sekunden \Rightarrow die laufende Messung wird noch beendet. Es erscheint "ENTER COMMAND" auf dem Display.

Read		
\$txt#measuring*	-	
\$cnt;0.37;0.00;0.00;24.51;04;03;2009;12;41* \$txt#measurement completed*		
Available Commands:		

- Folgende Befehle werden angezeigt und können nun eingegeben werden:

Available Commands: Snfo* Informations \$stp* stop measurement, Laser OFF Srun* run measurement \$cal* show calibration values \$ca1#xxxx* set 4 µm calibration value in mV \$ca2#xxxx* set 6 µm calibration value in mV \$ca3#xxxx* set 14 µm calibration value in mV \$cyl#xx* set measurement cycle (5s - 20s) \$str#xxxx* set storage interval (in hours) \$tme#ddmmyyyy#hhmm* set time and date \$del* Delete stored measurement results \$vfr#xxx* set volume flow rate in the measuring channel (0 - 999 ml/min; 000 means flow rate is measured) \$nid#xxx* set CAN Node-ID \$bdr#xxxx* set CAN baudrate (in kBit/s) \$can* controlling with CAN \$Ink* transfer stored measurement results Enter command:

2.6.2.5.1. Aufbau der Datentelegramme

- Die Kommunikation erfolgt über spezielle Datentelegramme.
- Um ein Datentelegramm einzugeben, muss zunächst immer ein "c" eingegeben werden.
- Die Datentelegramme sind allgemein folgendermaßen aufgebaut: \$cmd(#par#par)*
 - \$ Kennzeichnet Anfang eines Datentelegramms
 - cmd Befehl
 - # Trennzeichen
 - par Parameter für den Befehl
 - * Kennzeichnet Ende eines Datentelegramms
- Die Befehlsübernahme erfolgt mit dem Button [WRITE].
- Sollten die Parameter weniger Stellen erfordern, als von den Platzhaltern vorgesehen, müssen führende Nullen eingegeben werden.
 Hier zum Beispiel der Befehl zum Einstellen des Speicherintervalls auf 24 Stunden: \$str#0024*
 - \$ Kennzeichnet Anfang des Datentelegramms
 - str Befehl: Speicherintervall setzen
 - # Trennzeichen
 - 0024 Parameter für den Befehl: 24 Stunden
 - * Kennzeichnet Ende des Datentelegramms

2.6.2.5.2. Kommandoeingaben

2.6.2.5.2.1. Statusanzeige

- Eingabe von "c" und warten auf "ENTER COMMAND".
- Eingabe von **\$nfo*** in die Befehlszeile und mit Button **[WRITE]** bestätigen.
- \Rightarrow Statusinformationen werden nach wenigen Sekunden angezeigt.

- Danach wird automatisch die Partikelzählung fortgesetzt und angezeigt.
- Eingabe der nächsten Funktion erst möglich nach erneuter Eingabe von "c".

2.6.2.5.2.2. Einstellung von Datum und Uhrzeit

- Eingabe von "c" und warten auf "ENTER COMMAND".
- Eingabe von \$tme#ddmmyyyy#HHMM* mit Button [WRITE] bestätigen.
 (dd = Tag mm = Monat vvvv = Jahr HH = Stunde MM = Minuten)

(dd – rag min – Monat yyyy – Jam	
Enter command:	Enter command: \$nfo* Time: 12:28:40 Date: 13.03.2009
	-ready for measurement-
Write	storage interval: 1 h
\$tme#13032009#1228*	no of stored measurements: 4
	CAN Node-ID: 4
	CAN baudrate: 125 kBit/s
	\$txt#measuring *

- Datum und Uhrzeit werden übernommen und Messungen fortgesetzt.
 <u>Bsp.:</u> Eingabe für 13.03.2009; 12:28 Uhr: \$tme#13032009#1228*
- Überprüfung der Eingabe mit $nfo^* \Rightarrow$ Anzeige des eingegebenen Datums und Uhrzeit.

2.6.2.5.2.3. Speicherintervalle festlegen

- Eingabe von "c" und warten auf "ENTER COMMAND":
- Eingabe von **\$str#xxxx*** mit Button **[WRITE]** bestätigen.
- Speicherintervalle werden stundenweise eingestellt und Partikelzählung wird automatisch fortgesetzt.

Bsp.:	\$str#0000*	Es erfolgt keine Speicherung der Messungen.
	\$str#0001*	Speicherung erfolgt jede Stunde

\$str#0100* Speicherung erfolgt alle 100 Stunden

Enter command: Write \$str#0001	Enter command: \$str#0001* \$txt#storage time updated * \$txt#measuring *
J	

• Überprüfung der Eingabe mit \$nfo*.

	Enter command: \$nfo [×] Time: 12:19:36 Date: 13.03.2009 -ready for measurement-				
storage interval: 1 h					
	no of stored measurements: 4				
	CAN Node-ID: 4				
	CAN baudrate: 125 kBit/s				
	\$txt#measuring *				

2.6.2.5.2.4. Kalibrierwerte anzeigen

- Eingabe von "c" und warten auf "ENTER COMMAND":
- Eingabe von **\$cal*** mit Button **[WRITE]** bestätigen.

2.6.2.5.2.5. Kalibrierwerte eingeben

- Eingabe von "c" und warten auf "ENTER COMMAND":
- Es müssen 3 Kalibrierwerte eingegeben werden (4 μm_(c), 6 μm_(c), 14 μm_(c))
- Die Eingabe erfolgt in mV

Bsp.:	\$ca1#0280*	Kalibrierwert für 4 µm _(c) auf 280 mV setzen.
	\$ca2#1050*	Kalibrierwert für 6 µm _(c) auf 1050 mV setzen.
	\$ca3#4500*	Kalibrierwert für 14 µm _(c) auf 4500 mV setzen.

Die Kalibrierwerte können dem mitgelieferten Kalibrierzertifikat entnommen werden.

Calibration					noise signal:		160 mV	
	4 μm _(c)	4,6 μm _(c) 2 μm	6 μm _(c)	6,4 μm _(c) 5 μm	10 µm _(c)	14 μm_(c) 15 μm	21 µm _(c.) 25 µm	37 μm _(c) 50 μm
Master sensor (particle)	67866	42563	17588	13588	2386	533	102	22
Test sensor (particle)	68107	41974	17818	13824	2396	542	99	25
admissible variation	≤2 %	≤ 2 %	≤ 2 %	≤ 2 %	≤ 2 %	≤ 2 %	*	*
Test sensor threshold values (mV)	250	450	1050	1190	2680	4500	6950	9950

2.6.2.5.2.6. Messungen stoppen

- Eingabe von "c" und warten auf "ENTER COMMAND". •
- Eingabe von **\$stp*** und mit Button **[WRITE]** bestätigen. •

Die Messung wird gestoppt und bleibt gestoppt, bis sie wieder mit \$run* gestartet • wird. (auch nach Abschaltung der Betriebsspannung)

2.6.2.5.2.7. Messungen starten

Normalerweise erfolgen die Messungen automatisch. Der Befehl [RUN] wird nach dem Stop-Befehl notwendig.

- Eingabe von "c" und warten auf "ENTER COMMAND". •
- Eingabe von \$run* und mit Button [WRITE] bestätigen. •

Messwertanzeige der aktuellen Messung:

Messergebnisse werden in folgender Form angezeigt: **\$cnt;a.aa;b.bb;c.cc;f.ff;dd;mm;yyyy;HH;MM***

Read \$cnt;0.86;0.24;0.00;24.51;04;03;2009;12;27* \$txt#measurement completed* \$txt#measuring... *

Dabei bedeutet:

- **\$cnt:** Anzeige des Beginns eines neuen Datenfeldes (cnt = COUNT)
- a.aa: Partikel pro 1 ml (≥ 4 µm)
- **b.bb:** Partikel pro 1 ml (\geq 6 µm)
- **c.cc:** Partikel pro 1 ml (\geq 14 µm)
- f.ff: Volumenstrom durch den Messkanal des Sensors in ml/min
- dd: Tag (Datum)
- **mm:** Monat (Datum)
- yyyy: Jahr (Datum)
- HH: Stunde (Uhrzeit)
- MM: Minute (Uhrzeit)
- *: Bezeichnet das Ende eines Datenfeldes.

2.6.2.5.2.8. Datentransfer

- Mit **"\$Ink***" können gespeicherte Messwerte vom CCT 01 auf den externen Computer transferiert werden.
- "c" in die Befehlszeile eingeben und warten bis "ENTER COMMAND" erscheint.
- Eingabe von **\$Ink*** und mit **[WRITE]** bestätigen.

 Die gespeicherten Daten werden auf den Computer transferiert und direkt im Menüfenster angezeigt.

Messwertanzeige der gespeicherten Messwei	rte:
\$dta;xxxx;a.aa;b.bb;c.cc;f.ff;dd;mm;yyyy;HH;MM	;RR*

Dabei bedeutet:

\$dta:	Anzeige des Beginns eines neuen Datenfeldes (dta = DATA)
xxxx:	Nummer der Messung
a.aa:	Partikel pro 1 ml (\geq 4 µm)
b.bb:	Partikel pro 1 ml (\geq 6 µm)
c.cc:	Partikel pro 1 ml (≥14 µm)
f.ff:	Volumenstrom durch den Messkanal des Sensors in ml/min
dd:	Tag (Datum)
mm:	Monat (Datum)

- yyyy: Jahr (Datum)
- HH: Stunde (Uhrzeit)
- **MM:** Minute (Uhrzeit)
- *: Bezeichnet das Ende eines Datenfeldes.

2.6.2.5.2.9. Gespeicherte Messwerte löschen

- Eingabe von "c" und warten auf "ENTER COMMAND".
- Eingabe von \$del* und mit Button [WRITE] bestätigen.
- Gespeicherte Messungen werden gelöscht.

\$Ink* transfer stored measurement results Enter command:	
Write \$del [#]	WRITE
	CLOSE

2.6.2.5.2.10. CAN

Die CAN – Funktionen werden ausführlich im Kapitel 3 CAN-Schnittstelle beschrieben.

2.6.2.5.3. Terminal beenden

• Terminal beenden mit Button [CLOSE] ⇒ zurück zum Hauptmenü des Datenmanagerprogramms.

2.6.3. Konfiguration und Bedienung mittels virtuellem COM-Port

- **Optional** ist es möglich, durch Einsatz eines eigenen Steuer- bzw. Auswerteprogramms, die Konfiguration und Bedienung des CCT 01 mittels virtuellen COM-Port durchzuführen. (z.B.: Hyperterminal von Windows)
- Hierzu werden andere Treiber und Einstellungen am CCT 01 benötigt.
 In diesem Fall wenden Sie sich bitte an die Eaton Technologies GmbH.

3. CAN-Schnittstelle

Das CCT 01 verfügt zusätzlich über eine CAN-Schnittstelle. Die physikalische CAN-Schnittstelle entspricht der Norm ISO 11898 und ist durch Optokoppler galvanisch getrennt. Über diese Schnittstelle sind ebenfalls alle Einstellungen durchführbar, die auch über die USB-Schnittstelle erfolgen können. Das Kommunikationsprotokoll ist CANopen kompatibel, jedoch werden nicht alle CANopen-Funktionen unterstützt. In diesem Kapitel findet eine kurze Einleitung in das Feldbussystem CAN und dem darauf aufbauenden Kommunikationsprotokoll CANopen und eine Beschreibung zur Steuerung des CCT 01 über CAN statt.

3.1. Einführung in CAN und CANopen

3.1.1. CAN-Bus

Der CAN-Bus ist ein asynchron arbeitendes, serielles Feldbussystem. Es wurde ursprünglich 1983 von der Firma Bosch für die Fahrzeugindustrie entwickelt um die Vernetzung von Steuergeräten in Fahrzeugen zu erleichtern. Aufgrund der Tauglichkeit auch größere Anlagen steuern zu können, entwickelte sich der CAN-Bus zunehmend zum Industriestandard.

Der reine CAN-Bus basiert nicht auf einem Datenaustausch durch Adressierung des Nachrichtenempfängers, sondern durch eine Kennzeichnung der übertragenen Nachricht, dem sogenannten Identifier, welcher eine Länge von 11 Bits hat und gleichzeitig auch die Priorität der Nachricht festlegt. Je kleiner der Identifier, desto höher die Priorität. Die auf den Identifier folgende Nachricht kann maximal 8 Byte Daten beinhalten. Der grundlegende Aufbau eines CAN-Telegramms ist in der folgenden Abbildung zu sehen.

Identifier Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8
--

Somit legt CAN lediglich die Datenübertragung fest und macht jedoch keine Aussage über die Bedeutung der Nachricht. Dies wird von dem auf CAN basierenden Kommunikationsprotokoll CANopen spezifiziert.

3.1.2. CANopen

CANopen ist ein Standard der CAN-in-Automation. Die allgemeine Funktionsweise wird in der Spezifikation DS-301 beschrieben.

Zentrales Element des CANopen-Standards ist das sogenannte Objektverzeichnis. Es dient als Schnittstelle zwischen dem Netzwerk und dem eigentlichen Anwendungsprozess und enthält Informationen über das Gerät, alle Messwerte und Parameter. Die Adressierung der Objekte oder Parameter erfolgt durch eine Unterteilung in einen 16 – Bit Index und in einen 8 – Bit Subindex. Der Aufbau des Objektverzeichnisses und der Zugriff auf dieses ist in den nachfolgenden Kapiteln beschrieben. CANopen stellt zur Kommunikation verschiedene Kommunikationsobjekte bereit. Dies sind u.a.:

- Servicedatenobjekt (SDO):
- Prozessdatenobjekt (PDO):
- Netzwerkmanagementobjekte (NMT):
- Emergency-Objekt:

• TIMESTAMP-Objekt:

Zur Parametrierung von Geräteeinstellungen Zum Versenden von Messdaten Zur Änderung des Zustandes eines Geräts Zum Versenden von Fehler- oder Alarmmeldungen Zeitstempel zur Zeiteinstellung

Die Unterscheidung dieser Kommunikationsobjekte erfolgt über den Identifier. Der Identifier wird bei CANopen in zwei Teile zerlegt. Die höchstwertigen 4 Bit beschreiben den Funktionscode, welcher die Art der Nachricht angibt, die restlichen 7 Bit beschreiben die Knotennummer (Node ID). Dieser aufgeteilte Identifier wird bei CANopen als

Communication Object Identifier (COB-ID) bezeichnet. Somit ist es in diesem nachrichtenbasierten System möglich, auch einzelne Teilnehmer anzusprechen.

Funktionscode				Knotennummer						
Bit10	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

Die Bedeutung des Funktionscodes ist im sogenannten Pre-defined connection set festgelegt.

Objekt	Funktionscode (binär)	Resultierende COB-ID (dez)
NMT	0000	0
SYNC	0001	128
EMCY	0001	129 - 255
PDO1 (tx)	0011	385 – 511
PDO1 (rx)	0100	513 – 639
PDO2 (tx)	0101	641 – 767
PDO2 (rx)	0110	769 – 895
PDO3 (tx)	0111	897 – 1023
PDO3 (rx)	1000	1025 - 1151
PDO4 (tx)	1001	1153 – 1279
PDO4 (rx)	1010	1281 – 1407
SDO (tx)	1011	1409 – 1535
SDO (tx)	1100	1537 – 1663
NMT Error Control	1110	1793 - 1919

3.2. CANopen – Funktionalität

Das CCT 01 besitzt nicht die komplette CANopen-Funktionalität. Es sind folgende CANopen-Funktionen verfügbar:

- Ein Objektverzeichnis mit sämtlichen Messwerten und Parametern
- Ein SDO-Server \rightarrow zur Geräteparametierung
- Ein Transmit PDO \rightarrow zum Senden der Messwerte
- Nodeguarding oder Heartbeat
- Fehler- oder Alarmmeldungen per Emergency-Objekt
- Zeiteinstellung durch TIMESTAMP
- NMT-State-Machine

3.3. Inbetriebnahme

Nachfolgend ist die Vorgehensweise um die Steuerung über CAN zu starten beschrieben.

3.3.1. Baudrate

- Datenmanager starten und im Hauptmenü den Menüpunkt "CCT 01 TERMINAL" mittels Button [TERMINAL] aufrufen.
- Eingabe von "c" in der Befehlszeile, mit dem Button [WRITE] bestätigen und auf "Enter command" warten.

	Available Commander
	Available Commanus.
	\$nfo* Informations
	\$stp* stop measurement, Laser OFF
	\$run* run measurement
	\$str#xxxx* set storage interval (in hours)
	<pre>\$tme#ddmmyyyy#hhmm* set time and date</pre>
	\$del* Delete stored measurement results
	\$nid#xxx*_set_CAN_Node-ID
<	\$bdr#xxxx* set CAN baudrate (in kBit/s)
	\$can* controlling with CAN
	\$Ink* transfer stored measurement results
	Enter command:

- Eingabe der Baudrate mit dem Befehl **\$bdr#xxxx*** und mit dem Button **[WRITE]** bestätigen.
- Die Eingabe erfolgt in kBit/s.
- Nicht benötigte Stellen werden mit 0 aufgefüllt.
- Es werden folgende Baudraten unterstützt:

20 kBit/s 50 kBit/s 125 kBit/s 250 kBit/s 500 kBit/s 800 kBit/s 1 MBit/s

Bsp.: \$bdr#0050* Baudrate 50 kBit/s \$bdr#0125* Baudrate 125 kBit/s \$bdr#1000* Baudrate 1 Mbit/s (1000 kBit/s) \$lnk* transfer stored measurement results Enter command: \$bdr#0125* \$txt#CAN baudrate set to 125 kBit/s*

Standardmäßig ist die Baudrate auf 125 kBit/s eingestellt.

3.3.2. Node ID

- Im Datenmanager [TERMINAL] in der Befehlszeile Eingabe von "c", mit Button [WRITE] bestätigen und auf "Enter command" warten.
- Die Node ID wird mit dem Befehl **\$nid#xxx*** eingegeben und mit dem Button **[WRITE]** bestätigt.
- Nicht benötigte Stellen werden mit 0 aufgefüllt.
- Der Wert der Node ID kann zwischen 1 und 127 liegen.
 - Bsp.: \$nid#100* Node ID 100

\$nid#051* Node ID 51

Enter command: \$nid#050*

\$txt#Node-ID set to 50*

Standardmäßig ist die Node ID auf 1 eingestellt.

3.3.3. Start

- Im **Datenmanager [TERMINAL]** in die Befehlszeile Eingabe von **"c"**, mit Button **[WRITE]** bestätigen und auf **"Enter command"** warten.
- In die Befehlszeile **\$can*** eingeben und mit dem Button **[WRITE]** bestätigen.
- Nun folgt die Initialisierungsphase.
- Nach dieser wird der Zustand "**Pre-Operational**" erreicht und die Bootup-Nachricht gesendet. <u>Diese Nachricht hat folgenden A</u>ufbau:

Identifier	Daten
700h + Node ID	00h

• Der aktuelle Gerätezustand wird angezeigt.

```
Enter command:
$can*
```

\$txt#Controlling with CAN!*

\$txt#state: Initialisation*

\$txt#state: pre-Operational*

- Abbruch der Steuerung über CAN erfolgt ebenfalls durch die Eingabe von "c".
- Um danach das Hauptmenü aufzurufen, muss erneut die Eingabe von "c" erfolgen.
- Wenn das Gerät während des CAN-Betriebsmodus ausgeschaltet wird, geht es bei dem nächsten Neustart wieder automatisch in den CAN-Betriebsmodus.

3.4. Objektverzeichnis

- Das Objektverzeichnis hat einen Aufbau wie eine Tabelle mit Zeilen und Spalten.
- Die Adressierung der Felder bzw. Objekte geschieht durch die Angabe eines Index und eines Subindex.
- Das Objektverzeichnis des CCT 01 ist in zwei Teile gegliedert (kommunikationsspezifischer Teil und herstellerspezifischer Teil).
- Alle Parameter und Messwerte sind über das Standard-SDO über einen Index und Subindex zu erreichen.
- Im folgenden Abschnitt sind die zwei Abschnitte des Objektverzeichnisses mit Index, Subindex, Datentyp, Zugriffsrecht und Default-Wert beschrieben.

Index	Subindex	Bezeichnung	Daten-	Zu-	Defaultwert
(hex)	(hex)		typ	griff	
1000	0	Device Type	UNS32	ro	12Dh
1001	0	Error Register	UNS8	ro	0
1002	0	Manufacturer Status Register	UNS32	ro	0
100C	0	Guard Time	UNS16	rw	0
100D	0	Life Time Factor	UNS8	rw	0
1010	Store Para	meter Field			
	0	Number of Entries	UNS8	ro	1
	1	Save all Parameters	UNS32	rw	1
1012	0	COB-ID Time Stamp Object	UNS32	rw	100h
1014	0	COB-ID Emergency Object	UNS32	ro	80h + NID
1017	0	Heartbeat Producer Time	UNS16	rw	0
1200	Server SD	O Parameter			
	0	Number of Entries	UNS8	ro	2
	1	COB-ID Client Server	UNS32	ro	600h + NID
	2	COB-ID Server-Client	UNS32	ro	580h + NID
1800	Transmit P	DO1 Communication Parameter			
	0	Number of Entries	UNS8	ro	2
	1	COB-ID used by PDO	UNS32	ro	180h + NID
	2	Transmission Type	UNS8	ro	FEh
1A00	Transmit P	DO1 Mapping Parameter			
	0	Number of Entries	UNS8	ro	4
	1	1. Mapped Object	UNS32	ro	50000110h
	2	2. Mapped Object	UNS32	ro	50000210h
	3	3. Mapped Object	UNS32	ro	50000310h
	4	4. Mapped Object	UNS32	ro	50000410h

3.4.1. kommunikationsspezifischer Teil

3.4.1.1. Error Register (Index 1001h)

Das Error Register zeigt den Fehlerzustand des Gerätes an. Wenn ein Fehler auftritt oder eingestellte Grenzwerte überschritten werden, wird das Bit 0 (allgemeiner Fehler) gesetzt. Die Ursache des Fehlers wird durch das Manufacturer Status Register angezeigt. Der Inhalt des Error Registers wird in jeder Emergency-Nachricht mit übertragen.

3.4.1.2. Manufacturer Status Register (Index 1002h)

Dieses Register zeigt den aktuellen Zustand sämtlicher detektierbaren Fehler an. Jedes Bit steht dabei für einen bestimmten Fehler. Wenn ein Bit gesetzt ist, so ist dieser Fehler gerade aktiv. Das Register ist folgendermaßen aufgebaut:

Manufacturer Status Register								
Bit3	Bit2	Bit1	Bit0					
Limit 4 µm	Limit 6 µm	Limit 14 µm	Flow Sensor					

Das Bit 0 wird gesetzt, wenn kein gültiges Signal des Strömungssensors detektiert wird. Die Bits 1 bis 3 werden gesetzt, wenn ein eingesteller Grenzwert überschritten wird. Die Bits 4 bis 31 dieses Registers bleiben ungenutzt. Der Inhalt dieses Registers wird bei jeder Emergency-Nachricht gesendet.

3.4.1.3. Store Parameter Field

Das CCT 01 unterstützt das Speichern der Parameter in einem nichtflüchtigen Speicher. Bei einem lesenden Zugriff auf den Index 1010h Subindex 1h antwortet das Gerät mit dem Wert 1. Dies bedeutet, dass das Gerät alle Parameter nur auf ein Kommando speichert. Ansonsten werden die Parameter lediglich im RAM gespeichert und würden nach einem Reset verloren gehen.

Das Telegramm zum Speichern der Parameter ist folgendes:

Identifier	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Byte 8
600h + NID	23h	10h	10h	01h	73h	61h	76h	65h

3.4.2. Herstellerspezifischer Teil

Im Folgenden wird der herstellerspezifische Teil des Objektverzeichnisses näher beschrieben. Die folgende Tabelle zeigt den Aufbau dieses Abschnitts.

Index (hex)	Subindex (hex)	Bezeichnung	Daten- typ	Zu- griff	Defaultwert
3000	0	Limit 4 µm	UNS8	rw	0
3001	0	Limit 6 µm	UNS8	rw	0
3002	0	Limit 14 µm	UNS8	rw	0
3003	0	Sending Measurement Results	UNS16	rw	1
4000	0	Storage Interval	UNS16	rw	0
4001	0	Number of stored data	UNS16	rw	0
4002	Stored Data	a1	RECORD	ro	
			-		
			-		
		•	-		
43E9	Stored Data	a1000	RECORD	ro	
5000	Proz	zesswerte als UNS16	•		
	0	Anzahl der Einträge	UNS8	ro	4
	1	Reinheitsklasse 4 µm	UNS16	ro	(Messwert)
	2	Reinheitsklasse 6 µm	UNS16	ro	(Messwert)
	3	Reinheitsklasse 14 µm	UNS16	ro	(Messwert)
	4	Volumenstrom	UNS16	ro	(Messwert)
5100	Proz	zesswerte als REAL32			
	0	Anzahl der Einträge	UNS8	ro	4
	1	Partikel/ml 4 µm	REAL32	ro	(Messwert)
	2	Partikel/ml 6 µm	REAL32	ro	(Messwert)
	3	Partikel/ml 14 µm	REAL32	ro	(Messwert)
	4	Volumenstrom	REAL32	ro	(Messwert)

3.4.2.1. Grenzwerteinstellung

Die Indizes 3000h bis 3002h des Objektverzeichnisses dienen zum Einstellen von Grenzwerten der einzelnen Reinheitsklassen. Dabei können die Grenzwerte zur Messung nach ISO 4406 an den Indizes 3000h bis 3002h eingestellt werden. Dabei bedeutet der Wert 0 eine Deaktivierung der Grenzwertüberwachung.

3.4.2.2. Sending Measurement Results

Nach der hier eingestellten Zahl werden die Messergebnisse per PDO versendet. Eine Messung dauert 20 Sekunden. Das heißt, dass z.B. bei dem Wert 1 (Standardeinstellung) das Ergebnis nach jeder Messung gesendet wird und somit alle 20 Sekunden. Bei einer 0 wird das Ergebnis überhaupt nicht gesendet.

3.4.2.3. Speicherintervall

Das Speicherintervall befindet sich am Index 5000h und kann stundenweise zwischen 0 (Speicherintervall aus) und 1000 eingestellt werden.

3.4.2.4. Gespeicherte Messwerte

Am Index 4001h befindet sich die Anzahl der gespeicherten Messwerte. Maximal können 1000 Messwerte gespeichert werden. Die gespeicherten Messwerte können gelöscht werden, indem eine 0 an den Index 4001h und Subindex 0h geschrieben wird. Die gespeicherten Messwerte befinden sich an den nachfolgenden Indizes. Der erste mögliche Datensatz befindet sich am Index 4002h, der letzte mögliche Datensatz am Index 43E9h. Bei Abfrage von nicht vorhandenen Datensätzen wird der Abort Code "06010000h" als Antwort gesendet (Unsupported access to an object). Nachfolgend ist der Aufbau eines Datensatzes gezeigt.

Index	Subindex	Bezeichnung	Daten-	Zu-	Defaultwert
(hex)	(hex)		typ	griff	
4002	0	Anzahl der Einträge	UNS8	ro	9
	1	Тад	UNS8	ro	
	2	Monat	UNS8	ro	
	3	Jahr	UNS8	ro	
	4	Stunde	UNS8	ro	
	5	Minute	UNS8	ro	
	6	Particles/ml > 4 µm	REAL32	ro	
	7	Particles/ml > 6 µm	REAL32	ro	
	8	Particles/ml > 14 µm	REAL32	ro	
	9	Volumenstrom	REAL32	ro	

3.4.2.5. Prozesswerte

Die Prozesswerte sind Reinheitsklassen nach ISO4406 und der Volumenstrom durch den Messkanal. Die Werte befinden sich am Index 5000h als UNSIGNED16 – Variablen und am Index 5100h als REAL32 – Variablen. Die Einheit des Volumenstroms ist ml/min.

3.5. SDO (Service Data Object)

Mithilfe von SDOs kann schreibend oder lesend auf das Objektverzeichnis zugegriffen werden. Der Datentransfer erfolgt hierbei im Client-Server-Modell, d.h. zwischen 2 Teilnehmern. Es handelt sich hierbei um einen bestätigten Dienst. Der SDO-Client schickt eine Anforderung (Request) an einen bestimmten Teilnehmer. Der SDO Server führt den Befehl aus und antwortet auf die Anforderung (Response). Das CCT 01 stellt einen SDO Server dar.

COB-ID	Bedeutung
0x600 + Node ID	SDO Client \rightarrow CCT 01
0x580 + Node ID	CCT01 \rightarrow SDO Client

Für einen SDO Transfer werden folgende COB-IDs verwendet:

Die 8 Byte Daten bestehen bei einem SDO aus dem sogenannten Command Specifier (CS), 16 – Bit Index, 8 – Bit Subindex und maximal 4 Byte Daten. Der Aufbau wird in der olgenden Abbildung verdeutlicht.

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
CS	Inde	Index			Da	ten	

Bei einem Request wird durch den Command Specifier angezeigt, ob es sich um einen schreibenden oder lesenden Zugriff handelt. Bei einem schreibenden Zugriff wird zusätzlich die Anzahl der gültigen Bytes im Bereich Daten angezeigt.

Bei der Response wird angezeigt, ob der Request erfolgreich oder nicht erfolgreich war. Bei einem lesenden Zugriff wird ebenfalls die Anzahl der Bytes angezeigt. Bei einem nicht erfolgreichen Zugriff beinhaltet der Datenbereich einen 4 Byte Fehlercode. Die Bedeutung der Fehlercodes ist in der Spezifikation DS-301 beschrieben.

CS (hex)	Bedeutung	Telegrammart
2F	1 Byte schreiben	Request
2B	2 Byte schreiben	Request
27	3 Byte schreiben	Request
23	4 Byte schreiben	Request
60	Schreiben erfolgreich	Response
80	Fehler	Response
40	Leseanforderung	Request
4F	1 Byte Daten	Response
4B	2 Byte Daten	Response
47	3 Byte Daten	Response
43	4 Byte Daten	Response

Das CCT01 unterstützt nur die Übertragung von Daten mit einer maximalen Länge von 4 Byte!

3.6. Transmit PDO

Das CCT01 besitzt ein Sende PDO (TPDO). Dieses enthält die Messergebnisse in Reinheitsklassen nach ISO 4406 und den Volumenstrom durch den Messkanal. Der Identifier des PDOs ist fest eingestellt auf den Wert 180h + Node ID. Der Übertragungstyp ist 254 und ebenfalls nicht änderbar. Dies bedeutet, dass die Übertragung im herstellerspezifischen Bereich des Objektverzeichnisses definiert ist und wurde bereits im Abschnitt 3.4.2.2 erläutert. Das PDO Mapping ist ebenfalls nicht änderbar und in der nachfolgenden Abbildung dargestellt.

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
ldx 5000), Sidx 1	ldx 5000	, Sidx 2	ldx 5000), Sidx 3	ldx 5000	, Sidx 4

Das PDO kann auch jederzeit durch das Senden eines Datenanforderungstelegramms (Remote Frame) abgefragt werden.

3.7. Emergency Nachrichten

Bei Überschreitung der eingestellten Grenzwerte oder bei einem Fehler des Strömungssensors wird eine Emergency Nachricht gesendet. Der Identifier beträgt 80h + Node ID. Die Nachricht besteht aus dem Emergency Error Code, dem Error Register und dem Manufacturer Status Register. Die Art des Fehlers wird durch das Manufacturer Status Register angezeigt, welches im Kapitel 3.4.1.2 erläutert wurde.

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
Emerg Error (ency Code	Error Reg.	Mar	nufacturer S	Status Regi	ister	ungenutzt

3.8. Ausfallüberwachung

Für die Ausfallüberwachung stehen im CCT 01 entweder der Heartbeat- oder der Nodeguarding-Mechanismus zur Verfügung. Es kann jedoch nur eine der beiden Überwachungsmechanismen zum Einsatz kommen.

3.8.1. Nodeguarding

Das CCT 01 unterstützt nur das Nodeguarding. Das Lifeguarding wird nicht unterstützt, das heißt es findet keine Masterüberwachung statt. Beim Nodeguarding sendet der NMT-Master zyklisch ein Datenanforderungstelegramm an das zu überwachende Gerät. Der Identifier beträgt hierbei 700h + Node ID. Das Slave Gerät antwortet mit einem Toggle-Bit, das abwechselnd 0 und 1 sein muss und dem NMT-Status des Geräts. Falls keine Antwort des Geräts erfolgt, das Toggle-Bit oder der Status nicht mit dem vom Guarding-Master erwarteten Wert übereinstimmt, geht der Master von einem Fehler des Slaves aus. Das Nodeguarding ist nur möglich, wenn der Parameter "Producer Heartbeat Time" (1017) gleich "0" ist.

3.8.2. Heartbeat

Heartbeat ist eine Ausfallüberwachung, die ohne Verwendung von Remote Frame – Telegrammen auskommt. Dabei sendet das zu überwachende Gerät zyklisch eine Heartbeat-Nachricht. Diese Nachricht wird mit dem Identifier 700h + Node ID gesendet und enthält den NMT-Status des Geräts. Der Heartbeat-Mechanismus wird aktiviert sobald der Parameter "Producer Heartbeat Time" (1017h) einen Wert größer "0" enthält.

3.9. TIMESTAMP

Für die Zeiteinstellung kann das TIMESTAMP-Objekt genutzt werden. Dies ist ein Zeitstempel mit einer Länge von 6 Byte. Er enthält die Tage seit dem 1. Januar 1984 und die Millisekunden nach Mitternacht. Der Identifier ist standardmäßig nach dem Pre-defined connection set auf 100h eingestellt, er kann aber am Index 1012h verändert werden. Ein Empfang des Zeitstempels ist nur im Zustand Pre-Operational und wenn das MSB des Objekts 1012h auf 1 gesetzt ist.

3.10. Netzwerkmanagement

Die State-Machine ist gemäss Kommunikationsprofil DS-301 implementiert. Das CCT 01 unterstützt die folgenden Befehle:

- Start Remote Node
- Stop Remote Node
- Enter Pre-Operational
- Reset Node
- Reset Communication

3.11. EDS-Datei

Für das CCT 01 steht ein Elektronisches Datenblatt (EDS-Datei) zur Verfügung. Dieses enthält eine vollständige Beschreibung des Objektverzeichnisses und dient zum leichten Einbinden in ein CANopen-Konfigurationstool.

3.12. Beispiele zur CAN-Kommunikation

In diesem Kapitel sind Beispiele zur Steuerung des CCT 01 über CAN angegeben. Alle Zahlen sind hexadezimal angegeben.

Knotennummer 5, Grenzwert 4 µm abfragen:

	Identifier	8 Byte Daten
Client	605	40 00 30 00 00 00 00 00
Antwort CCT 01	585	4F 00 30 00 xx 00 00 00

Knotennummer 15, Partikelanzahl des 1.Kanals abfragen:

	Identifier	8 Byte Daten
Client	60F	40 00 51 01 00 00 00 00
Antwort CCT 01	58F	43 00 51 01 xx xx xx xx

Knotennummer 15, Gerät in Zustand Operational setzen (unbeantwortet):

	Identifier	2 Byte
Master	0	01 0F oder 01 00

4. Sensorkalibrierung

- Der Lasersensor wird nach ISO 11171 mit ISO MTD Fluid kalibriert und mit einem Kalibrierzertifikat ausgeliefert.
- Die Gültigkeit des Kalibrierzertifikats beträgt 12 Monate.
- Von Eaton wird ein Kalibrierintervall von einem Jahr empfohlen. Zur Sekundärkalibrierung ist der Sensor und das CCT 01 an Eaton Technologies GmbH in Altußheim zu senden.
- Das Kalibrier- und Wartungspaket für den Sensor und das CCT 01 umfasst folgende Leistungen:
 - Funktionstest des Sensors und des CCT 01
 - Kalibrierung mit Kalibrierzertifikat
 - Programmierung der neuen Kalibrierwerte im CCT 01
 - 24 Stunden Funktionstest.
- Bei Auslieferung ist das CCT 01 mit den Kalibrierwerten des mitgelieferten Lasersensors programmiert.
- Wenn nur der Sensor PFS 01 zur Kalibrierung geschickt wurde, müssen die Kalibrierwerte in das CCT 01 eingetragen werden.
- Beim Austausch oder Neukalibrierung des Lasersensors muss eine Änderung der programmierten Kalibrierwerte im CCT 01 erfolgen. Die Eingabe der neuen Kalibrierwerte sind in Kapitel 2.6.2.5.2.5 beschrieben.

5. <u>Anhang</u>

5.1. Technische Daten

Einsatzmedien:

- 5.1.1. Lasersensor PFS 01 Messprinzip:
 - Kalibrierverfahren: Koinzidenzgrenze: Maximal zulässiger Betriebsdruck: Maximale Öltemperatur: Viskositätsbereich: Umgebungstemperatur: Mindestvolumenstrom: Maximal zulässiger Volumenstrom: Anschlüsse: Schutzart: Masse:

Partikelzählung nach dem Lichtabdeckungsprinzip ISO MTD in Öl (ISO 11171:2000) 10.000 Partikel / ml ≤ 50 bar / ≤ 725 psi 70 °C / 158 °F 10.....400 mm²/s / 45...1854 SUS 0...+ 70 °C / 32...158 °F 500 ml/ min / 0,132 gal/ min 50 l/min / 13,3 gal/min Rohrleitungen 1" oder ³/₄" IP 65 1,5 kg / 3,3 lb (m) Hydraulik- und Schmierflüssigkeiten auf

Mineralölbasis (siehe gesonderte

Verträglichkeitsliste 5.5)

5.1.2. CCT 01 – Reinheitsklassentransmitter

Messverfahren:	automatische Partikelzählung
Partikelgrößen:	$> 4 \ \mu m_{(c)}, > 6 \ \mu m_{(c)}, > 14 \ \mu m_{(c)}$
Darstellung der RK:	ISO 4406 (4 - 25)
Messgenauigkeit: (Reinheitsklassen)	± 1
Umgebungstemperatur:	0+ 70 °C / 32158 °F
Material:	Aluminium
Stromversorgung:	24 V DC
Analogausgänge:	3 x 420 mA
Max. Bürde:	450 Ω
Schutzklasse:	IP 65
Speicherkapazität:	bis 1000 Messungen
Anschlussstecker:	M12 - Buchse - für Stromausgänge Buchse - 7 polig - DIN 45321 M8 - Stecker 3 polig power supply M12 - Stecker CAN – Bus

Schnittstellen:	USB (zur Konfiguration) CAN: ISO 11898, CAN 2.0A, CANopen kompatibel
Abmaße:	201 x 85 x 35 mm x mm x mm
Masse:	380 g

5.2. Anschlussbelegung

CON 2:

CON 2:			•3	
Braun:	+ 24 V	1		M 8
Blau:	GND	3	•4	Stecker
Schwarz:	RESERVED	4	•1	
		-	\smile	

CON 1:

Braun:	+ 24 V	1
Weiß:	4 µ	2
Blau:	6 µ	3
Schwarz:	GND	4
Grau:	14 µ	5

M 12 Buchse

CAN:

Braun:	CAN Shield	1
Weiß:	NC	2
Blau:	GND	3
Schwarz:	CAN H	4
Grau:	CAN L	5

M 12 Stecker

5.3. Montageanleitung

Bemaßung in mm. falls nicht anders angegeben

5.4. Reinheitsklassen nach ISO 4406:99

Nach ISO 4406 von 1999 wird die Anzahl der Partikel in den Größenordnungen > 4 μ m, > 6 μ m und > 14 μ m zur Ermittlung der Reinheitsklasse (RK) herangezogen. Die Bestimmung der RK ist unabhängig von der Partikelgröße.

Beispiel der Darstellung:

Analysevolumen: 1 ml

Reinheitsklasse	Anzahl der Partikel	Bis einschließlich
26	320000	640000
25	160000	320000
24	80000	160000
23	40000	80000
22	20000	40000
21	10000	20000
20	5000	10000
19	2500	5000
18	1300	2500
17	640	1300
16	320	640
15	160	320
14	80	160
13	40	80
12	20	40
11	10	20
10	5	10
9	2,5	5
8	1,3	2,5
7	0,6	1,3
6	0,3	0,6

5.5. Einsatzbereiche - Verträglichkeit

- Hydrauliköle H, HL, HLP, und HV
- Getriebeöle C, CL, CLP
- Motorenöle, Gasöle
- MIL-H-5606 E
- Öle auf pflanzlicher Basis (HTG, Triglyzeride)
- Synthetische Ester (HEES)

5.6. Fehlerbehebung

Das CCT 01 enthält keine vom Anwender austauschbaren Teile. Fehlfunktionen, welche selbst zu beheben wären, beschränken sich daher auf die Reinigung des Sensors und die Überprüfung der verwendeten Kabel auf Kabelbruch. Ansonsten muss der Sensor bzw. der Reinheitsklassentransmitter CCT 01 zur Wiederherstellung der Funktionen an Eaton Technologies GmbH gesendet werden. Eine kurze Fehlerbeschreibung hilft uns bei der Fehlersuche und Reparatur. Bei telefonischen Rückfragen oder zur Klärung der Garantieansprüche benötigen wir die Seriennummer des Gerätes bzw. Sensors und das Kaufdatum.

5.7. Lieferumfang

		Artikel Nr.:
(1)	Transmitter CCT 01	328597
(2)	Sensor PFS 01	327213
(3)	Sensorkabel, L = 5 m	328684
(4)	FEB Leitungsstecker	328685
(5)	FEB Kabel 3308 PS, L = 5 m	328686
(6)	USB – Kabel	328687
(7)	Montageklammern	328663
(8)	Datenmanager 2.0 CD (incl. CCT 01 Treiber)	327284
(9)	Bedienungsanleitung	328688

North America — HQ 70 Wood Ave., South, 2nd Floor Iselin, NJ 08830 Toll Free: (800) 656-3344 (North America Only) Voice: (732) 767-4200

China

No. 3, Lane 280, Linhong Road Changning District, 200335 Shanghai, P.R. China Voice: +86-21-5200-0099

Singapore

4 Loyang Lane #04-01/02 Singapore 508914 Voice: +65-6825-1668

Europe/Africa/Middle East

Friedensstraße 41 D-68804 Altlussheim, Germany Voice: +49-6205-2094-0

Auf der Heide 2 53947 Nettersheim, Germany Voice: +49-2486-809-0

An den Nahewiesen 24 55450 Langenlonsheim, Germany Voice: +49 6704 204-0

Brazil

Av. Julia Gaioli, 474 – Bonsucesso 07251-500 – Guarulhos, Brazil Voice: +55 (11) 2465-8822

For more information, please e-mail us at filtrationinfo@eaton.com

Visit us online <u>eaton.com/filtration</u> for a complete list of Eaton's filtration products.

©2012 Eaton Corporation. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners. Litho USA.

All information and recommendations appearing in this brochure concerning the use of products described herein are based on tests believed to be reliable. However, it is the user's responsibility to determine the suitability for his own use of such products. Since the actual use by others is beyond our control, no guarantee, expressed or implied, is made by Eaton as to the effects of such use or the results to be obtained. Eaton assumes no liability arising out of the use by others of such products. Nor is the information herein to be construed as absolutely complete, since additional information may be necessary or desirable when particular or exceptional conditions or circumstances exist or because of applicable laws or government regulations.

